پیش بینی جریان رودخانه با استفاده از برنامه ریزی ژنتیک (مطالعه موردی: حوضه آبریز رودخانه لیقوان)

Authors

نیما فربودنام

محمدعلی قربانی

محمد تقی اعلمی

abstract

روش­های متعددی هم­چون مدل سری­های زمانی، شبکه­های عصبی مصنوعی، منطق فازی، نرو فازی و برنامه­ریزی ژنتیک برای پیش­بینی جریان رودخانه به کار می­رود. در تحقیق حاضر از روش نوین برنامه­ریزی ژنتیک جهت پیش­بینی جریان روزانه رودخانه لیقوان در حوضه آبریز دریاچه ارومیه در دوره آماری 1376 تا 1380 استفاده شد.  هم­چنین نقش حافظه در کاهش یا افزایش دقت پیش بینی مورد بررسی قرار گرفت. جهت مدل­سازی جریان رودخانه با برنامه­ریزی ژنتیک از حافظه­های دبی یک روز قبل، دو روز قبل، .... و پنج روز قبل استفاده شد و نتایج بر اساس شاخص­های آماری جذر میانگین مربعات خطا و ضریب همبستگی مورد بررسی قرار گرفت. نتایج تا حافظه دبی چهار روز قبل، رو به بهبود بوده و بعد از آن رو به نزول گذاشت. جهت بررسی بیشتر این فرایند از مدل شبکه­های عصبی مصنوعی نیز استفاده گردید. برای مدل شبکه­های عصبی، ساختارهای مختلفی مورد بررسی قرار گرفت که ساختار با چهار نرون در لایه ورودی و شش نرون در لایه پنهان و یک نرون در لایه خروجی، بهترین نتایج را داد. برای مدل شبکه­های عصبی مصنوعی نیز حافظه تا دبی چهار روز قبل رو به بهبود بوده و بعد از آن رو به نزول می­گذارد. در مقایسه نتایج دو مدل، در مورد حالت بهینه مدل برنامه­ریزی ژنتیک، ضریب همبستگی و جذر میانگین مربعات خطا برای آموزش به ترتیب 959/. و 029/0 و برای حالت بهینه مدل شبکه­های عصبی مصنوعی به ترتیب 948/. و 215/. می­باشد. لذا برنامه­ریزی ژنتیک از دقت بیشتری نسبت به مدل شبکه­های عصبی مصنوعی برخوردار بوده و به عنوان روشی مناسب و دقیق جهت پیش­بینی پیشنهاد می­گردد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش‌بینی جریان رودخانه با استفاده از برنامه‌ریزی ژنتیک (مطالعه موردی: حوضه آبریز رودخانه لیقوان)

روش­های متعددی هم­چون مدل سری­های زمانی، شبکه­های عصبی مصنوعی، منطق فازی، نرو فازی و برنامه­ریزی ژنتیک برای پیش­بینی جریان رودخانه به کار می­رود. در تحقیق حاضر از روش نوین برنامه­ریزی ژنتیک جهت پیش­بینی جریان روزانه رودخانه لیقوان در حوضه آبریز دریاچه ارومیه در دوره آماری 1376 تا 1380 استفاده شد.  هم­چنین نقش حافظه در کاهش یا افزایش دقت پیش بینی مورد بررسی قرار گرفت. جهت مدل­سازی جریان رودخانه ...

full text

تخمین جریان رودخانه در فصل ذوب برف با استفاده از عوامل هواشناختی (مطالعه موردی: حوضه آبریز لیقوان)

بررسی ارتباط بین متغیرهای اندازه‌گیری شده در ایستگاه‌های هواشناسی با رواناب سطحی حوضه‌های کوهستانی می‌تواند در مدل‌سازی جریان مفید واقع شود. در این مطالعه به‌منظور بررسی تأثیر سری‌های زمانی متغیرهای هواشناختی ثبت شده در ایستگاه سینوپتیک سهند بر میزان ذوب برف و رواناب ناشی از آن در حوضه لیقوان، همبستگی این متغیرها با میانگین دمای روزانه (1380 الی 1388) مورد بررسی قرار گرفته و سعی گردید متغیرهایی...

full text

پیش بینی جریان روزانه رودخانه با استفاده از سیستم استنتاج فازی (مطالعه موردی: حوضه آبریز لیقوان چای)

رودخانه ها، بخش عمده و قابل توجهی از منابع آب کشورمان را تشکیل می دهند. رشد میزان مصرف آب از یک سو و محدودیت این منابع حیاتی از سویی دیگر، نیاز به مدیریت بهره برداری از این منابع را بیش از پیش، آشکار می سازد. در سال های اخیر استفاده از تئوری مجموعه های فازی جهت مدل سازی پدیده های هیدرولوژیکی که دارای پیچیدگی و عدم قطعیت بالایی هستند، مورد توجه محققین قرار گرفته است. به همین دلیل، در این پژوهش ا...

15 صفحه اول

مقایسه مدل های غیرخطی سری زمانی و برنامه ریزی ژنتیک در پیش بینی جریان روزانه رودخانه ها (مطالعه موردی: رودخانه باراندوزچای ارومیه)

در این مطالعه برای پیش بینی جریان روزانه رودخانه باراندوزچای ارومیه در دوره آماری 1388-1352، از مدل غیرخطی سری زمانی دوخطی و روش برنامه ریزی ژنتیک استفاده و نتایج بر اساس شاخص های آماری جذر میانگین مربعات خطا و ضریب همبستگی مورد مقایسه قرار گرفت. در مطالعه حاضر مدل دوخطی BL(1,11,1,1) با داشتن کمترین مقدار معیار اکایکه اصلاح شده به عنوان مدل مناسب سری روزانه انتخاب و پس از انجام آزمون نکویی براز...

full text

کاربرد شبکه های بیزین و برنامه ریزی ژنتیک در پیش بینی جریان روزانه رودخانه (مطالعه موردی: رودخانه باراندوزچای)

برآورد دقیق آبدهی رودخانه ها یکی از موارد مهم در پیش بینی خشکسالی، سیلاب، طراحی سازه­ های آبی، بهره برداری از مخازن سدها و کنترل رسوب می باشد.روش­های متعددی همچون مدل­های سری­زمانی، شبکه­های عصبی مصنوعی، منطق فازی و برنامه­ریزی ژنتیک برای پیش­بینی جریان رودخانه به کار می­رود. در مطالعه حاضر به منظور پیش­بینی جریان رودخانه باراندوزچای از دو روش برنامه­ریزی ژنتیک و شبکه­های بیزین استفاده شد. داده...

full text

پیش بینی جریان رودخانه با استفاده از سیستم استنتاج فازی

یکی از روشهای نو ظهور در حل مسایل مهندسی جهت مدل‌سازی سیستم‌هایی که دارای پیجیدگی زیاد یا عدم‌  صراحت بوده و یا داده‌های کافی از آنها موجود نیست، استفاده از تئوری مجموعه‌های فازی از جمله سیستم می‌باشد. مزیت اصلی این تکنیک نسبت به  استنتاج فازی روش‌های رایج، این است که این سیستم بر اساس قواعد اگر- آن‌گاه بنا نهاده شده است و قادر به تعیین ارتباط بین متغیرهای ورودی و خروجی با استفاده از قواعد مزبو...

full text

My Resources

Save resource for easier access later


Journal title:
دانش آب و خاک

Publisher: دانشگاه تبریز

ISSN 2008-5133

volume 19

issue بهار و تابستان 2009

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023